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FOREWORD 

This report comprises the analytical portion of a two-part 
vibration study of a pressurized torus shell. Part I of this study, 
which is contained in NASA CR-884, reports the experimental 
investigation and was prepared by Peter F. Jordan of the Martin 
Company, Baltimore, Maryland, under Contract No. NAS l-6088. 
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VIBRATION STUDY OF A PRESSURIZED TORUS SHELL 

Part II - Development and Applications of Analysis 

by Atis A. Liepins 
Dynatech Corporation 

SUMMARY 

Previous work on the free vibrations of pressure prestressed toroidal 
shells is extended. Shells constructed of a number of toroidal segments, each 
with a constant thickness, and various boundary conditions are included. The 
analysis is then applied to simple models of a toroidal shell structure for which 
experimental results are published. The calculated fundamental frequency and 
mode shape of this shell agree well with the experimental results for three levels 
of internal pressure. 
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INTRODUCTION 

Several numerical analyses of the free vibrations of shells of revolution 

are reported in the literature. The most recent of these [ 1 ] includes the effects 
of prestress. Finite difference techniques are used in the numerical analysis. 
The formulation of the vibration problem in Reference [ 11, however, is such 
that for thin toroidal shells the finite difference mesh converges slowly [ 2 ] , and 
for toroidal membranes it does not give meaningful results [ 31. A different 
formulation of the problem for toroidal shells avoids these difficulties [ 2,3]. 

Previous analyses of the free vibrations of pressure prestressed toroidal 
shells [ 2,3 ] have dealt with unsupported shells with ,constant wall thichess. This 
report extends these analyses to toroidal shells with various support conditions 
and varying wall thickness. The supports are located at the inner and outer 
circumferences. The support conditions may be completely general. The shell 
may consist of a number of toroidal segments forming a complete torus. Each 
segment has a constant thickness. (Refer to Figure 1). All segments are made of 
the same material. 

The present analysis is applied to a toroidal shell structure for which 
experimental frequencies and mode shapes are published [ 4 ] . The structure 
consists of a toroidal shell stiffened at the outer circumference by a ring and at 

the inner circumference by a hub plate. Since the present analysis does not con- 

sider stiffening elements or additional masses, it is applicable to vibrations for 

which the stiffening elements are ineffective. Three simple models are investigated 

and the frequencies and mode shapes of the fundamental and first few overtones of 
each model are presented. 
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NOMENCLATURE 

C 

% 

hO 

‘s, 

P 

r 

U 

V 

W 

AO 

C,N,Q,S 

scale factor for mode shapes 

thickness of k-th toroidal segment 

reference thickness 

(1 - u2) pR/Eh, 

pressure 

(1 - E: cos cY)/E 

meridional displacement (Figure 1) 

circumferential displacement (Figure 1) 

normal displacement (Figure 1) 

Eho/(l - v2) 

defined functions 
To+ T2... T 12 

DO 

E 

‘k 

McY’ Mey Mae 

N~‘Ne’N~e 

&CY~ &e 

R 

Eht /12 (1 - v2) 

Young’s modulus 

membrane strains 

difference spaces in k-th segment 

stress couples 

stress resultants 

transverse shear stress resultants 

radius of the generating circle of torus (Figure 1) 

% ‘e 
membrane prestress forces 

Q 

‘k 

meridional position angle (Figure 1) 

angle of k-th juncture 
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E 

‘k 

e 

K o! 3 Ke' KOfe 
A 

V 

P 

rk 

Ak 

Matrices 

yl’ y2 

A,B,C,D,E,F,H 

p,x,,x2, Yl’Y2 

I 

Z 

Indices 

i 

j 

k 

J 

K 

L 

n 

ratio of the two radii of the torus (Figure 1) 

hO’% 

circumferential position angle (Figure 1) 

bending strains 

( pR2/E l 2) WY frequency parameter 

Poisson’s ratio 

material density 

rotations of the normal to the shell 

circular frequency 

(hk/W2/ 12 

spacing between finite difference stations 

1 x 4 column matrices 

4 x 4 matrices 

Identity matrix 

1 x 4 column matrix 

4 x 4 matrices 

station in a segment 

station 

segment 

juncture station 

number of segments 

last station 

Fourier index of shell vibrations (corresponds to y in 
Reference [ 41 ) 
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FUNDAMENTAL EQUATIONS 

The present analysis of the free vibrations of pressure prestressed 
toroidal shells is based upon a system of equations presented in Reference [ 51. 
For the k-th toroidal segment these are: 

Equilibrium 

8N 
& W$) + -# - Ne sin LL! + rQo! + -& cos Q! a 

(1 + 7)~ (Ma,) 

+ se [&fEae- 
aE 

+ae) + (Ea- Eel sin Q 1 + rS, (s - @,I 

+ pRr Gcy + phkRw2ru = 0 (1) 

aNe 
ae + & trNae) + Nae sina,-Q COSQ--- e 2; ai [( 1+ ‘y) Mae] 

aEe 
+ SehET + 2Eae sin c2 + @e cos CY] + rSQl &- (Eae + %e) 

+ pRr$, + p\Rw2rv = 0 (2) 

rN (y - Ne cos (Y - -&- aQe 
@QJ - r 

a+e 
+ SehEiT t- Ga! sin Q - Ee cos cv ] 

a% 
+ rsQl t-jjij-- + ECy) - PRr tEa + Ee) - phkRw2rw = 0 (3) 

aM,e 
& O-Ma) + r - Me sino! - RrQa = 0 

aMe 
ae +$- (rMCye) + Nae sin cy - RrQe = 0 

(4) 

(5) 

5 



Strain-Displacement 

REa = e +w (6) 

rREe av = - + u sin (Y - w co8 ti- 
ae (7) 

av au 2rREa,, = rz +w-vsina 

a4cv RK~ = acr 

a+e 
IRK =- 

e ae + %Y sin Q 

(8) 

(9) 

(10) 

a+e wa 
2rRKcye = r= +ae- #e sin a - (r + co8 a)Gcye (11) 

R$J~ =-++u (12) 

aw -rR$ = r 
- 0 

+ v CO8 a (13) 

au -2rR@ - - = ae 0te 
(14) 

Constitutive Relations 

Eh E 
kQ 

= Na- vNe (15) 

EhkEe = N~-YN~ (16) 

EhkE,,e = (l?-v)N ae 

12Ka = MQI-vMe 

(17) 

(18) 

= Me - vMa (19) 

Ec 
TTKf2e t (1 + v, Mae WV 
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The stress resultants S, and S, are known functions of pressure. 
They are determined from a separate analysis of the toroidal shell subjected 
to static internal pressure. An analysis based upon the linear membrane theory 

PI gives : 

%Y = pR 
1 -$ E cos CY 
1 -6 CO6 o! 

(21) 

se = $PR 



REDUCTION TO SECOND ORDER DIFFERENTIAL EQUATIONS 

The solution of the fundamental equations (1 - 20) is started by separating 

the variables. Set 

Na, Ea,Mcr, Ka, $,, U 1 = 
Ne, Ee. Me, Ke, Q,, w 

Next, define 

s = (sin a)/r 
C= (co9 a)/r 
N= dr 

D 
AoNan,E,n,+Man,+&n~ eQLn, Run - 

D D 
Een,-$Mens +K~/-Q R2 on Rw,, 

. 

I 

1 

COB n 8 

sin’n 8 

(22) 

(23) 

Then, use of equations (211, (22) and (23) in equations (1 - 20) yields (in nondimensional 
form) 

Nh + S(No-Ne) + NNae + rk~i [Q, + f(l+ C)M,e] 

+ \ [+NtELYe- eae) + +S(Ea-Ee) + (1 ++C)(Eh- $J + +a] 

+ (l- V2)E2AU = 0 (24) 

Nhe + 2SNae- NNe - $fli [CQe + + (1 + C) (M& - SQ)~ 

+ kJ+(-NEe+ 2SEae+ C$,)+ (l+$C)(E;Yd+ @he)+ @e] 

+ (l- 
2 2 u)c hv = 0 (25) 
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No! - CNe - rkq; [(Q:, + SQ,) + NQe] + $ [+(N#e + ma! - CEe) 

+ t1 +$c)( +A + Ecu) - (Ea + Ee)] - (1 - IJ2) E2A w = 0 (26) 

MA + S(M,! - Me) + NMae - Qa = 0 

Mhe + 2SMae- NMe- Qe = 0 

EcY = u’ + w 

Ee = NV + Su - Cw 

2Eae = v’ - Sv - Nu 

K 
cd 

= $b, 

Ke = S(ba + N$‘e 

2Kae = @~-SGe-N$a-(l+C)+LYe 

@a = -w’+ u 

$9 = NW-Cv 

2%e = Nu + v’ + Sv 

qkNa = Ea + vEe 

qkNe = Ee + vE, 

‘lkNae = tl- V)Eae 

3 
qkMa = Kb + t’Ke 

3 qkMo = K~ + VK~ 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 
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In equations (24 - 43) and subsequent expressions, the subscript n has 
been dropped. Prime indicates differentiation with respect to (Y. 

At this point the problem has been reduced to the simultaneous solution 

of equations (24 - 43). Next, we derive four simultaneous second order 

ential equations for u, v, @o, and Q,. The details of this derivation 
found in Reference [ 21. The result is 

AZ” + BZ’ + CZ = 0 

where 
U 

V 

Z = i 1 %Y 

QCY 

and tbe elements of the A, B, and C matrices are given in the Appendix. 

Equations (44) are the governing equations for the k-th toroidal segment. 
elements of the Z matrix are the basic variables of this formulation. 

The normal displacement is related to the basic variables by 

Qw = Tlu’ + T2u + T v’ + T4v + T # 3 j a + T6ea - $~;(a’~ + 

differ- 

may be 

(44) 

The 

SQ,) 

(45) 
The Q and T’s are given in the Appendix. 
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BOUNDARY AND JUNCTURE CONDITIONS 

An application of the principle of virtual work to equations- (l-5) yields 
the boundary conditions. On an edge where (Y is constant prescribe: 

Na! + %YEo! or u= 0 

N f2e- 2R ‘(l+ 3yS”)Mcu9 + Scr(EQIQ + $a& or v= 0 

QCY + 
1 aMo!Q 

% a 8 - %% 
(46) 

or w= 0 

or $a,= 0 

Applying equations ( 21), (22), and (23) to the boundary conditions (46) yields: 

NQ, + &ki(l++)EU or u= 0 

N cY9 
_ + rkq; (1 + 3C)Mo9 + $ kk (l ++‘)tEa~ + +&/J) 

or v= 0 

kk 
(47) 

Qo! +NM - 0e 3 (I+ or w= 0 
rk ‘k 

o! 

McY or $0 = 0 

where the subscript n has been dropped. 

as: 
The boundary conditions (47) may be written in a single matrix equation 

YIYl + Y2Y2 = 0 (46) 

where yl and y2 are column matrices consisting of the nondimensional force and 
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displacement conditions respectively in equations (47); YI and Y2 are diagonal 

matrices that characterize the type of support condition. The elements of YI and 
Y2 matrices for two types of simple support, clamped support, and no support 
are given in the Appendix. 

It is of advantage to have the boundary equation (48) expressed entirely 
in terms of the basic variables Z. This is accomplished by direct substitution 
into (47). The result is 

y1 = q+z + @,Z 

(49) 
Y2 = e3z’ + e4z 

where the elements of the # matrices are given in the Appendix. 

With (49) the boundary equation (48) becomes 

[ yl$j, + Y2+3] z’ + [ yl@2 + Y2@4]Z = O (50) 

At the juncture of two toroidal segments we require: 

for equilibrium of forces 
+ 

Yl = Yl 
(51) 

for continuity of deformations y2 = Y; 

where the plus and minus superscripts refer to the quantities just before and 
immediately after the juncture (see Reference [ 71). 

With (49) the juncture equations (51) become 

f#‘; (z-)’ + (#J; z- = gJ1+ (z+)’ + &+ z+ 
. 

$3 (5)’ + ‘$4 z- = e3+ (z+)’ + $4+ zq+ 

(52) 
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NUMERICAL ANALYSIS 

Since the geometry and prestress are symmetrical about Q = 0 and 
(Y = r, we need to consider only one-half of the torus corresponding to the range 
0 5 o! I.7r. Assume that one half of the torus is constructed of K segments, the 
k-th segment terminating at (Y = pk. Let each segment be subdivided by Ik + 1 

equally spaced stations. Then the spacing between stations is 

k= 2,3.. .K 

and the position angle for the j-th station is 

7 
= iA 1 

k= 2,3.. .K 
~j= Pk-I+ i4, i = 0, 1,2. . 4 

The last station, oL, is at (Y = 7r, where 

L=l 

The derivatives of Z at all stations except those at junctures, cx J , are 

approximated by the central difference formulas 

+ i Ik 
k=l 

Z” = 
j 

- 2zj + z. 
J-1) 

(53) 

(55) 
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With these formulas we obtain from equation (44) the set of difference equations 

DZ + EjZj + F. Z. 
J J-1 = 

0 
j j+l (56) 

where 

Ej = - it- A. + 2Ahcj 
4rJ 

-&A -B 
Fj - Ah j j (57) 

Equations (56) apply at all stations except those at junctures. 

In the juncture equations (52) the first derivative is approximated by a 

forward or backward difference formula 

tz-); = & (3ZJ - 4ZJ-1 + ZJe2’ 

(z+); = f'$t3'J- 4zJ+1 + ‘J+2) (56) 

Then for the J-th juncture, the juncture conditions in finite difference form are 

z-(32;- 4ZJ-1 + zJw2) + $; 2; = + ‘J+$ + @;‘J+ 

z (323 - 4ZJ-1 + z J-2) + $4 ZJ = - - 
+ 

(3zJ - 4zJ+1 + 'J+2) + @4'z; 

(6’3) 

At (Y = 0 the boundary equation in finite difference form is 

-zhPl + y; @,I t Zl 
0 

- Z-l) + q G3 + q4)zo= 0 

1 

and at cv = K 

(61) 

(62) 
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The superscripts o and 7r denote the boundary matrices at cr = 0 and 

o = 8, respectively. 

The eigenvalues of the homogeneous equations (56) and (59) through (62) 
are found by trial and error using Potters method [ 8 ] , [ 21. 

zj = -P. z 
J j+l 

where 
Pj = [ Ej - Fj Pjml]-lDj 

(63) 

(64) 

applies to all j except j = 0, j = J, and j = J+ 1. 

Write (56) for j = 0, and eliminate Z-I from (61). Then by comparison 
with (63) 

PO = [ 2A1 t+3 + y;G4) + (Y;$ + Y;@2)F;1Eo]-1(Y;$l + $G2)(I + F,-lDo) 

(65) 
Now, write equation (56) at j = J+ 1, equation (63) at j = J-2, and solve 

equation (60) for ZT. J Then equation (59) becomes 

DJZJ+l + EJZi + FJZJ 1 = 0 

where 
+ 
1 - x1x2@; ) (41 + D;: 1 EJ+ + 

and 

FJ = - & t +; - X1X2@‘;) (41 + PJm2) 

x1 = [ ~4+ - $+ (31- DJ~IF~+I)]-~ 

x2 
-1 

(31-DJ+1FJ+$ 

(66) 

(67) 

+ 
The governing equation for the station after the juncture, where ZJ is 

eliminated, is 
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--. 

DJ+ 1 ‘J+ 2 

- - 
+ EJZJ+l + FJZJ = 0 W) 

where 

DJ+ 1 = DJ+l 
+ 

$3 -1 
EJ+l = EJ+l - FJ+lX1 t41 + DJ+lEJ+l) 

FJ+ 1 
3+3 +; 

= FJ&[$ + - + - t41+ 'J-2) 'J-1 1 2A- 2A- 
(69) 

Then PJ and PJ+ 1 are found from equation (64) using (67) and (69). 

Equations (64) and (65) provide all the P’s up to PL-1. Then write equation 

(56) at j = L, equation (63) at j = L-l, and eliminate ZL+ 1 from (62). The 
result is 

where 

HZL = 0 (70) 

I-I = 2% (y2 q3 + Y;9,) - ( y”lG1 + Y; e,) DL~E~ 

+ up, + Y; +,I (1 + D;‘FL) PLBl 

Since, in general, ZL # 0, we must require that the determinant 

V= H I I (71) 

vanish. Equation (71) is a frequency equation. 

When the vibration is axisymmetric (n = 0) and such that w is symmetric 

and u is antisymmetric about cy = K,- Z L = 0. The frequency equation for this 

case is obtained from equation (56) written at i = L- 1 with the help of equation (64). 

It is 

v = EL-1 I - FL-l pL-2 I (72) 

For a natural frequency, ZL is found from 

Z Lm = cH m m = 1, 2, 3, 4 (73) 
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where c is an arbitrary scale factor and the Hm are the cofactors of the first 

row of H. The remaining Z’s are calculated in the reverse order with (64). The 

w component of the mode shape is calculated from equation (45) where the first 

derivative is approximated by the first of equations (55) at all stations except at 

the juncture and the station after the juncture. At these stations linear approxima- 

tions are used. 

The mode shapes are such that either v and w are symmetric, u is 

antisymmetric, or v and w are antisymmetric, and u is symmetric with 

respect to Q = 0 and x. These two groups of modes are denoted as symmetric 

and antisymmetric respectively. 

The foregoing computing procedure may be summarized as follows: 

1. Assume a value of h ; 

2. Calculate the elements of the A, B, C, D, E, F, and 

P matrices at all stations; 

3. Calculate the determinant; 

4. Repeat steps 1 - 3. From a plot of the determinant versus A 

determine a A (natural frequency) for which the determinant 

is zero; 

5. Calculate the mode shape for a natural frequency. 

The equations of this analysis are programmed in Fortran IV. The IBM 

7094 II produces a determinant in approximately 1.5 seconds. and a mode shape in 

3 seconds when seventy-five finite difference stations are used. Computation time 

increases linearly with the number of finite difference stations. 

17 



RESULTS 

The analysis developed in the preceding sections was applied to three 
simple models of a toroidal shell structure for which experimental frequencies 
and mode shapes are published [ 41. The structure consists of a complete 

toroidal shell, made up of segments, each with a constant thickness; a plate, 
closing the hub; and a sheet metal ring at the outer circumference. A more 
detailed description of the model is given in Reference [ 41. The average values 
of the structure parameters, taken from Reference [ 41, are given in Table 1. 

Model I 

The weight of Model I equals the total weight of the toroidal structure 
including fittings. The weights of the hub plate with fittings and the outer ring are 
modeled as material added to the skin in the regions -0.21 CY ~0.2 and r-O.055 (Y 

5~ + 0.05, respectively. The width of these regions was chosen to keep the skin 
thicknesses reasonable. The wall thickness variation of Model I is shown in 
Figure 2. No attempt is made to model the elastic supports provided by the hub 
plate or the ring at the outer circumference. The model is supported in a free- 
free manner. 

The fundamental frequency and mode shape for 0, 6, 15, and 30 psi internal 
pressure was calculated using double precision arithmetic (16 digits). Convergence 
of the finite difference mesh was established for the frequency at 15 psi pressure 

with 181 difference spacings distributed as follows: II = 11, I2 = 18, I3 = 28, 

I4 = 119, I5 = 5. It was assumed that convergence for the frequency and mode 
shape at other pressures was achieved with 181 spacings. Interestingly, the 
frequencies converged from below the final frequency. 

The overtones were calculated using single precision arithmetic (8 digits). 
A total of 75 difference spacings, II = I2 = I5 = 5, I3 = 10, I4 = 50, were used. 
The first overtone at 0 psi pressure was also calculated with 150 spacings in 
single precision and with 75 spacings in double precision. The frequency calculated 
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with 150 spacings was less than 170 lower than that calculated with 75 spacings in 

single precision. The frequencies calculated in single and double precision were 

identical to 3 significant digits. 

The calculated fundamental frequencies and mode shapes are compared 

with experimental results in Figures 3 and 4. At 15 psi pressure .the calculated 
and experimental frequencies and mode shapes are in very good agreement. How- 
ever, the agreement deteriorates with decreasing pressure. The discrepancy 

between the calculated and measured results at 0 and 6 psi Dressure may be due 

to an insufficient number of stations in the finite difference mesh. 

The calculated frequencies of the first five overtones of Model I are 

compared to the measured overtone frequencies in Table 2. There is wide 

disagreement between the calculated and measured frequencies. 

The mode shapes of the first five overtones of Model I for p = 0 are 

shown in Figure 5. The mode shapes for p = 6, 15, and 30 psi do not depart 

significantly from those for p = 0. 

Models II and III -- 

Model II disregards the weight of the hub plate with fittings and the outer 

ring, as well as the elastic support provided by them. The wall thickness variation 

of this model is shown in Figure 6. Model II is supported in a free-free manner. 

Model III is an unsupported torus with a constant thickness of 0.0627 inches 

(h/R = 0.00545). 

The fundamental frequencies and mode shapes of Model II were calculated 

with 150 finite difference spacings (II = I2 = I5 = 10, I3 = 20, I4 = 100). Again, 

the fundamental frequency converged from below the final frequency. All other 

frequencies and mode shapes of Models II and III were calculated with 75 spacings. 

The first five frequencies of Models II and III for p = 0, 6, 15, and 30 psi 

and the measured results are compared in Table 3. The calculated mode shapes 

are displayed in Figure 7. Although the overtone frequencies of Models II and III 

are closer to the experimental results than those of Model I, wide differences 

still exist. Furthermore, the large normal displacements at the hub of the com- 

puted symmetric modes are unrealistic because of the presence of the hub plate. 
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The effect of various boundary conditions on the first overtone of Model II 

was investigated. The following boundary conditions were considered: 

Hub (a, = 0) 

simple support I 

simple support II 

clamped support 

elastic support 

free 

free 

free 

free 

Outer Circumference (a, = 7r ) 

free 

free 

free 

free 

simple support I 

simple support II 

clamped support 

elastic support 

In the elastic support the normal displacement and the transverse 

shear force were elastically related. The stiffness was taken to be that of the 

center plate under uniform in-plane load. The remaining three conditions in 

the elastic support were the appropriate ones of simple support I. 

The difference in frequency and mode shape for the elastic support 

and simple support I was found to be insignificant. This was expected as the 

in-plane. stiffness of the center plate is high. 

The torus, in this mode, has identical frequencies and mode shapes for 

clamped support and simple support I. Computations verified this. The frequencies 

and mode shapes for the remaining four combinations of supports are shown in 

Figure 8. There is a small difference in frequency and mode shape when the torus 

has a simple support I, II and no support (see Table 3 and Figure 7 for frequencies 

and mode shapes of the free-free torus) at the outer circumference and the hub 

is not supported. However, there is a significant difference in frequency and 

mode shape when the hub is supported and the outer circumference is free. The 

importance of the conditions at the hub for this mode are further demonstrated by 

Figure 9. Here the normal displacements for Models I and II and the measured 

results are displayed. Model I and the measured results are in good agreement 

in the region outside the crown (90”s (Y 5 180” )I The two measured displacements 

inside the crown (O%~s90’ ) fall between Model I and II results. 
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CONCLUSIONS 

Analysis and computer program are developed for free vibrations of 
complete toroidal shells with pressure. These shells may be constructed of 
several toroidal segments, each with a constant thickness. Supports may be 
specified at inner and outer circumferences. 

This analysis is applied to three simple models of a toroidal shell 
structure for which experimental results are published. Model I of this structure 
gives fundamental frequencies and mode shapes for three levels of internal pres- 
sure that are in good agreement with experimental results. Models more accurate 
than those analyzed here are necessary for the calculation of overtones. 

The effects of support conditions on the frequency and mode shape of the 
first overtone of Model II are briefly investigated. These calculations show that 
the support conditions at the outer circumference have a relatively small effect 
on the frequency and mode shape of this mode. However, careful attention should 
be given to the support conditions at the hub. 
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APPENDIX 

The elements of the A, B, and C matrices are: 

A11 = Q2 [ 1 + k (I+ $ C)] + QT1 T7 

A12 = QT3 T7 

A13 = QT5 T7 

A14 = - v3rQT7 

A2l = QTlT9 

~4~~ = Q2 [ $- (1 - v) + k(l + ++tl - v)r (l+ 3#]+QT T 
3 9 

A23 = QT5 T9 

A24 = - v3rQTg 

AQ1 = QT1 

A32 = QT3 

A33 = QT5 

A34 = --q3 rQ 

A4l = QT1 T1l 

A42 = QT3 T1l 

A43 = Q2 + QT5 Tll 

A44 = -7) 3 rQTll 
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Bll = Q2S(l+ ik)+QTT(Ti+T2)+ TlT8 

B12 = +Q2~ [(I +u) -;(l-u)r(l +C)(l +3C)] +QT7(T3’+T4)+T3T8 

B13 = QT7(T$+T6)+T5T8 

B14 = -rl 3r(QST7 + T8) 

B21 = -+Q2~[i+u+ i(l-U)I’(l+3C)(l-C)]+QTg(Ti +T2)+TlTlo 

B22 = ; Q2S [l- u + k -+(1-v) r(l+3c)(5+3c)]+ QTg(T3~+T4)+T3~10 

B23 = I’Q2N[uC++ (1-v)(l + 3C)] + QTg(T5’ +T6) +T5T10 

B24 = 
3 

- 77 r tQSTg+ Tlo) 

B31 = Q (Ti + T2) - Q’ Tl 

B 32 = Q(T3’ + T4)- Q’T3 

B33 = Q (Ts’ + T6) - Q’ T5 

B34 = -q3 r(QS - &'I 

B41 = QT11 Pi + 7’2) + T1 T12 

B42 = 
-Q2N [UC + ; (l- v)(l + 3 C,] + Q TlltT; + T4) + T3 T12 

B43 = Q2S + QTll(T5’+ T6) + T5T12 

B44 = 
3 

- v r tQSTll + T12) 
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c11 = Q2[(1-v2)e2A+vC-S 2- ;(l- v)N2- ;k(N2+S2)- ;(l-v)r(l+ C)2N2] 

+ QT7T2’3 T T 2 8 

c12 = Q2NS[ -;(3-+k++)r(1+C)(l+3C)]+QT7T4’ +T4T8 

c13 = -; Q2 [kc+ +v)I’(1+C)N2]+ QT7T6’+ T6T8 

c14 = q31’[Q2 - QT7(C -S2)-ST81 

c21 = -Q2NS[$(3-u) +k +z(l-v)r(i+ q2]+ QT~T~~ + ~~~~~ 

c22 = Q2 {t l- u~),~A-~(~-u)(C+ S2)-N2 -~k(N2+S2+C2)-kC-rN2c2 

+ ;(l- v)r(l+ 3C)[s2(5 + 3C)-c(l+ 3c)])+ QTgT4 + ~~~~~ 

'23 = rQ2NS[C-&l-v)]+ QTgT6’+T6T10 

'24 = - q3r [QT~ (c-s2) -I- sTlo] 

c31 = -Q2+ QT2’ - &IT2 

'32 = QT4’-Q’T4 

c33 = Q2+ QT6’ - Q”Q 

c34 = - q3 l? [Q (C - S2) - Q’S] 

C41 = - ;(l - v)(1+C)N2Q2 + QTllT2’ + T2T12 

'42 = Q2NS[C+v(1+C)+~(1-v)(l+3C)]+QTllT41+T4T12 
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c43 = Q2[uC-S2 -+ (l-v)N2]+ QT11T6' + T6T12 

c44 = -v3 1 Q2 + r [QQ(C - s2) + sT,,l} 

where T1 = l- uC+;kC-;(l-u)rN'(l-C)+;NTo[l+u+;(l-L)r(l+ 3C)(l-C)] 

T2 = s[u- C-k(l+ ;C)+ ;(l-u)FN2]+ NST0[;(3-u)+k 

+ g (1 - U) r(i + cj2 - f (1-u) r (2 +3c)] 

T3 = -;(l-u)rNS-;STo[l-u+k+-$(l-u)r(l+3C)(5+3C)] 

T4 = N 
t 

u-C-k(l+ C)+I'[-N2C +;(l-v)S2-+(1-u)(1+3C)C] 

- To { (1 - u~)E~A-+(~-u)(C+ S2)-N2-;k(N2+S2+C2)-kC 

- rN2 c2 + +(I- U) r (I+ 3c)[s2(5 + 3~) -c (I+ 3~~1) 

T5 = k(1++C)+rN2-I'NTo [UC+ ;(I-u)(l+ 3c)] 

T6 = S{;k + I'N2 + ; l?NTo [3(1-u) + (l- 3u) C]} 

T7 = l-uC+k(l+;C)++(l-u)r(1+C)N2 

T8 = QS(l+C)[l+ ;k-;(l-u)rN2]-Q'T7 

Tg = $1 -u)rNS(2+ 3C) 

T1O = QN[- U+ c+k(l+ c)+ rN2c + +u)r(l+ 3C)(C-2S2) 

-f(l- u)I- (1 - 3C)S2] - Q'Tg 
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T = 11 ; (1 + u)N2 

T12 = -PN 
2 

SQ + Q’ TI1) 

To = 
$ (1 - u) r (1 + 3 C) N 

- u) +k (1 ++) + ; (1 - U) r (1 + 3 c)~ 

Q = (1 - u2) E2h - 1 - c2 + 2uc -$k(3C+ N2+ C2)-I’N2[N2+(l-u)C] 

+ TON{- u + C + k(l+C)+rN2C +f (l-u)r[(l+X)c-3(1+ c)s2]} 

prime indicates differentiation with respect to a, and the subscript k has been dropped 
on q, k, and I’. The derivatives of N, S, and C are: 

N’ = -NS 

S’ = c-s2 

C’ = - s (1 + C) 

Elements of $ lmatrix: 

$11 = 
1 T1 

y 
1+ k(l+$C)+[l-uC+k(l+$C)]- 

Q > 

$12 = $[l- T3 uC+k(l+ ;C']r 

T5 I- UC +k (1 + +)I q- 

914 = -q2r[i - UC + k (1 + $21 $ 
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l-u 
$21 = 277 

Tl -r((1+3C)NS- 
Q 

$22 = 
T3 * p+ ;r(1+3C)(1+3C+4NS - 
Q )I 

+ + (1 + ;c, 

$23 = 
T5 +y+ 3C)NS & 

$24 = 

G 31 = 

$32 = 

$33 = 

@34 = 

$41 = 

$42 = 

$43 = 

-+ (I-~)~~ r2 (1+3c)y 

T1 
-+ (l- u)N2S & 

7) 

L(l-u)N(1+3C+ 4NS 
4v3 

T5 
-+ (l- u)N2S & 

7) 

(l- $2 9 r 

1 2 Tl -- 
TuN Q 

T3 
+ uN2 - 
71 

Q 

T5 +(I+ uN2 &' 
v 

$44 = - uN21’/Q 

T3 
&) 

Elements of @2 matrix: 

1 T2 
$11 = y- 

uS+[l-uC+k(l+;C)]+ 
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+12 = + 
{ 

UN + [l- T4 uC+k(l+;C)]x} 

$13 = $[l- UC + k(l+ ;C)]+ 

$14 = -v2r[l- UC + k (1 + + C)] $ 

$21 = -~N[l++r(1+3C)(l- c-4s T2 
-$I 

$22 = 
T4 -+[l+ +r(l+ 3C)(l+ 3C-4N +] 

$23 = 
T6 -$+(1+3C)N(l+S- 
Q) 

'24 
1 =-- 
2 (l- u) q2 r2 ( 1+3c) NS2 

Q 

G 
1 T2 

31 = -3(1-u)N2(1-C-4Sg) 
47 

'32 
= A(1 T4 

47?3 
-u)NS(l+ 3C-4N- 

Q) 

@33 = -$ [( l- u)N2 (1-f S T6 g)+g(l+;c)] 

$34 
N2 S2 = l+r(~-~)- 

Q 

1 
'41= 3 uN 

2 T2 

v 
Q 
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‘42 = 
1 T4 --pN (C-N-- 

77 Q) 

$43 
= ;l,,(S +N2 T6 

&) 

N2S 
@44 = - u r & 

Nonzero Elements of 9, Matrix: 

G 31 = T1/Q 

‘32 = T3/Q 

@33 = T5/Q 

+34 = -v3r/g 

Nonzero Elements of 4, Matrix: 

@ 31 = T/Q 

@ 32 = T4/Q 

+33 = Ts/s 

934 =-7j3r S/Q 

The subscript k has been dropped on q , k, and I’. 
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Support condition matrices Yl and Y2. Simple support I (v = 0): 

Y1 = 

I 
0 * 

0 

0 

A. 1 
Y2 = 

Simple support II (Ncr-, = 0): 

Y1 = 0 

[ 1 
Y2 = 

1 
0 \ 

A 

Clamped support: 

Y, = 0 Y2 = I 
I 

No support: 

Y1 = A 

IA-11 

IA-11 
A 

1 

1 

1 

I I A-l . 

1 

0 
1 

IA4 

Y = 
2 )A-11 

A 

[ 1 

A 

IA-11 

where A = 0 for symmetric modes 

A= 1 for antisymmetric modes 
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Example of elastic support: simple support I resting on an elastic foundation 
at the inner circumference 

I 

k is spring constant 

The boundary matrices at CL = 0 are: 

Y2 = 

I 
1 

1 

1 

IA-11 
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E 

E 

u 

Table 1 

STRUCTURE PARAMETERS 

Pg 

Weight of outer ring 

Total weight of structure 
and fittings 

11.5 in. 

0.7326 

10.7 x lo6 psi 

0.32 

0.103 lb/in3 

4.17 lbs 

76.84 lbs 
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Table 2 

CALCULATED MODEL I AND MEASURED OVERTONE FREQUENCIES 

:alculated 
Mode 0 psi 

Pressure 

Frequency, cps 

6 psi 15 psi 30 psi 

n= 1 471 476 482 490 
Symmetric (178-190) 1 (212-224) 1 (185-201) 1 

n= 2 

kntisymmetric 

550 577 610 653 
(252) 2S* (301) 2s (431) 2 

n= 2 558 
Symmetric (276) 2A* 

583 615 653 
(441) 2 or 3A (444) 2 or 3 

n= 2 

Symmetric 

562 590 625 671 
(391) 3s (523) (3) (521) 2 

n= 2 564 592 627 671 
ntisymmetric (438) 2 (557) ? (523) 3 

The experimental frequencies (shown in parenthesis) are scaled from Figures lla & 13 

bf Reference [ 41. 

* 2s - n = 2, Symmetric Mode ; 2A - n .= 2, Antisymmetric Mode 
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Table 3 

CALCULATED MODEL II AND III AND MEASURED FREQUENCIES 

Frequency, cps 

1 T 5 psi pressure 
III Measured 

30 psi pressure Calculated 
Mode 

0 psi pressure 6 psi pressure 
II -Ill Measured II II III Measured 111 

- 

61.3 73.0 48.8 79.5 93.1 61.2 99.0 115 75.8 123 

** ** 178-190 
(1) 

** ** 212-224 
(1) 

** ** 185-201 
(1) 

** 

246 186 252 
WV* 

268 219 301 
cw 

296 259 431 
(2) 

333 

252 199 276 
W)* 

274 234 441 
(2 or 3A 

303 276 444 
(2 or 3) 

343 

451 326 391 
(3S) 

484 372 523 
(3) 

526 521 
(2) 

583 

458 325 438 
(2) 

490 371 557 
(?) 

531 

430 

429 523 
(3) 

587 

n=‘O 
Antisymmetric 

n= 1 

n= 2 
Symmetric 

n= 2 
Antisymmetric 

n= 3 
Symmetric 

n= 3 
Antisymmetric 

143 

** 

311 

331 

509 

507 

W 
cn 

*2s - n = 2, Symmetric Mode ; 2A - n = 2, Antisymmetric Mode 
** Calculated frequencies are higher than n = 3, Antisymmetric 



AXIS OF 
ROTATION 

PLANE OF 

SYMMETRY 

FIGURE I GEOMETRY AND NOTATION 
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AXIS OF 
ROTATION 

I 

k pk hk 
I 0.2 RAD 1.800 

2 30. 0.160 

3 58. 0.100 

4 ITI - 0.05 RAD 0.082 7 

5 7T 02887 

FIGURE 2 WALL THICKNESS VARIATION OF MODEL I 
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AXIS OF 
ROTATION - p=o 

--- P=30 

INTERNAL CALCULATED 
PRESSURE, PSI FREQUENCY, CPS 

0 4 5.4 

6 59.3 

MEASURED 

FREQUENCY, CPS 

48.8* 

61.2 ’ 

15 74.4 75.8** 

30 92.8 

*AVERAGE OF TWO VALUES GIVEN IN FIGURE 9a OF 
REFERENCE [4] 

* * SEE DISCUSSION ON PAGE IO, REFERENCE [4] 

FIGURE! 3 FUNDAMENTAL MODE OF MODEL I FOR ns0 
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I I 
30 60 

0 8 
P=O 

-4- P =I5 

SYMBOLS DENOTE MEASURED DATA 
FROM FIGURE 9a OF REF [4] 

FIGURE 4: FUNDAMENTAL MODE OF MODEL I - CALCULATED AND MEASURED 



AXIS OF 
ROTATION 

n= I, SYMMETRIC 

471 CPS 

n=2, ANTISYMMETRIC 

550 CPS . 

n = 2. SYMMETRIC 

562 CPS 

” -oPrW 
n=2. SYMMETRIC 

558 CPS 

n=2, ANTISYMMETRI C 

564 CPS 

FIGURE 5 OVERTONE MODE SHAPES OF MODEL I , p=O 
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AXIS OF 

ROTATION 

I 
--- 

k - 

3o” 

58O 

180° 

0.160 

O.lOO 

0.062 7 

FIGURE 6 WALL THICKNESS VARIATION OF MODEL a 
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AXIS OF 
ROTATION I 

w = 1.0 

n= 3, SYMMETRIC 

451. 326 CPS 

n- 2, SYMMETRIC 

242, 186 CPS 

-. 
/ 

@ 

+ 

n = 0. ANTI SYMMETRIC 

61.3, 73.0 CPS 

MODEL TT 
_--- MODEL ii( 

MODEL Ii FREQUENCb 
GIVEN FIRST 

I 

@ 

-+ 

n= 2. ANTISYMMETRIC 

252. 198 CPS 

n = 3. ANTISYMMETRIC 

458. 325 CPS 

FIGURE 7 MODE SHAPES OF MODELS n AND.m, ~‘0 

42 



FREE AT a 8 T FREE ATQ a0 

- SIMPLE SUPPORT I (V=O) AT a-O,771 CPS - SIMPLE SUPPORT I AT a = I, 291 CPS 
--- SIMPLE SUPPORT II (N,eaO) ATa=O,556 CPS 0-0 SIMPLE SUPPORT XC AT a * r, 273 CPS 

--+-- 

0.5 
v 0 

-0.5 

FIGURE 9: n = 2, SYMMETRIC MODE SHAPES OF MODELIt ‘W1‘Tt-i SUPPORTS, p= 6 PSI 



1.0 

W 

0 

-MODEL I, 528 CPS 
----MODELII, 246 CPS 

0 ,,Q,EXPERIMENTAL, 252 CPS 
P a 0 I FIGURE 150, REFC 43) 

FIGURE 9: NORMAL DISPLACEMENT OF n= 2 SYMMETRIC MODE 
OF MODELS I &II, AND EXPERIMENTAL RESULTS 
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